
The Software Life Cycle
Software Engineering

Andreas Zeller • Saarland University

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

A Software Crisis

Code and Fix
(1950–)

Build first version

Modify until  
client is satisfied

Operate

Retirement

Code and Fix: Issues

• No process steps – no specs, docs,
tests…

• No separation of concerns – no
teamwork

• No way to deal with complexity

Code and Fix

Waterfall Model
(1968)

Communicatio
n 

project initiation

Planning
estimating 
scheduling 
tracking

Modeling
analysis 
design

Construction
code 
test

Deployment
delivery 
support
feedback

Communication
Communicatio

n 
project initiation

Waterfall Model
(1968)

Communicatio
n 

project initiation

Planning
estimating 
scheduling 
tracking

Modeling
analysis 
design

Construction
code 
test

Deployment
delivery 
support
feedback

Planning

Planning
estimating 
scheduling 
tracking

Waterfall Model
(1968)

Communicatio
n 

project initiation

Planning
estimating 
scheduling 
tracking

Modeling
analysis 
design

Construction
code 
test

Deployment
delivery 
support
feedback

Waterfall Model (1968)

Modeling
analysis 
design

Waterfall Model
(1968)

Communicatio
n 

project initiation

Planning
estimating 
scheduling 
tracking

Modeling
analysis 
design

Construction
code 
test

Deployment
delivery 
support
feedback

Waterfall Model

Construction
code 
test

Waterfall Model
(1968)

Communicatio
n 

project initiation

Planning
estimating 
scheduling 
tracking

Modeling
analysis 
design

Construction
code 
test

Deployment
delivery 
support
feedback

Deployment

Deployment
delivery 
support
feedback

Waterfall Model
(1968)

Communicatio
n 

project initiation

Planning
estimating 
scheduling 
tracking

Modeling
analysis 
design

Construction
code 
test

Deployment
delivery 
support
feedback

Communicatio
n 

project initiation

Planning
estimating 
scheduling 
tracking

Modeling
analysis 
design

Construction
code 
test

Deployment
delivery 
support
feedback

Waterfall Model
(1968)

• Real projects rarely follow a sequential
flow

• Hard to state all requirements explicitly

• No maintenance or evolution involved

• Customer must have patience

• Any blunder can be disastrous

Boehm’s first law

Errors are most frequent 
during requirements and design activities

and are the more expensive 
the later they are removed.

Problem Cost

0.0

7.5

15.0

22.5

30.0

Coding Unit test Component test System test Field

Relative cost of problem per phase

Incremental Model
Features

Time

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Increment #1

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Increment #2

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Increment #3

Incremental Model

• Each linear sequence produces a
particular “increment” to the software

• First increment typically core product;
more features added by later increments

• Allows flexible allocation of resources

Prototyping

Quick Plan

Quick Design

Prototype
Construction

Deployment and
Feedback

Communication

Prototypes

Bottom Layer

Top Layer (GUI)

Horizontal Prototype

Bottom Layer

Top Layer (GUI)

Prototypes

Bottom Layer

Top Layer (GUI)

Vertical Prototype

Bottom Layer

Top Layer (GUI)

Prototypes

• A horizontal prototype tests a particular
layer (typically the GUI) of the system

• A vertical prototype tests a particular
functionality across all layers

• Resist pressure to turn a prototype into
a final result!

Spiral Model
(1988)

Communication

Planning
Modeling

Construction

Test
Deployment + Feedback

Spiral Model

• System is developed in series of
evolutionary releases

• Milestones for each iteration of the spiral

• Process does not end with delivery

• Reflects iterative nature of development

Unified Process
(1999)

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Inception

PlanningCommunication

Inception

• Encompasses communication with user +
planning

• Results in a set of use cases

• Architecture is just a tentative outline

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Elaboration

Planning

Modelling

Elaboration

• Refines and expands
preliminary use cases

• Provides architecture
and initial design
model

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Construction

Modelling

Construction
Construction

• Builds (or acquires)
software components
according to architecture

• Completes design model

• Includes implementation,
unit tests, acceptance tests

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Transition

Construction

Deployment

Transition

• Software given to end users for beta
testing

• Feedback reports defects and changes

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Production

Deployment

Software
Increment

Production

• Software is deployed

• Problems are monitored

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Re-Iteration

Deployment

Communication

• Feedback results in new
iteration for next release

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Unified Process

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Unified Process

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

• Draws on best features of conventional
process models

• Emphasizes software architecture and
design

• Integrates with UML modeling techniques
(more on this later)

• Individuals and activities over processes and tools.

• Working software over comprehensive
documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan..

Manifesto for Agile Software Development (2001)

• Fast development? Hacking? Prototyping?
Uncontrolled fun? Programmer heaven?

• Agility = ability to react to changing situations
quickly, appropriately, and effectively.

• notice changes early

• initiate action promptly

• create a feasible and effective alternative plan quickly

• reorient work and resources quickly and effectively

What is Agile Development?

Agile?
Communicatio

n 
project initiation

Planning
estimating 
scheduling 
tracking

Modeling
analysis 
design

Construction
code 
test

Deployment
delivery 
support
feedback

Incremental Model
Features

Time

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Increment #1

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Increment #2

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Increment #3

Agile Processes

Time

Scope

Analyse

Design

Implement

Test

Waterfall Iterative Agile Processes

Credits: Prof. Bodik

Agile vs. Plan-driven

• Low criticality

• Senior developers

• Requirements change very
often

• Small number of developers

• Culture that thrives on chaos

Agile

• High criticality

• Junior developers

• Requirements don't change
too often

• Large number of developers

• Culture that demands order

Plan-driven

What is an Agile Process?

• Difficult to predict which requirements
will persist or change in the future.

• For many types of software, design and
development are interleaved.

• Analysis, design, construction, and testing
are not as predictable.

So, how to tackle
unpredictability?

make the process adaptable...

Extreme Programming
(1999–)

Design

CodingTest

Planning

Software
Increment

Design

CodingTest

Planning

Software
Increment

Planning

Planning

• In XP, planning
takes place by
means of stories

• Each story
captures essential
behavior

Extreme Programming

Design

CodingTest

Planning

Software
Increment

Design

CodingTest

Planning

Software
Increment

Extreme Programming

DesignDesign

CodingTest

Planning

Software
Increment

• Design is made on the fly, using the KISS
(keep it simple) principle

• Virtually no notation besides 
CRC cards (object sketches) and 
spike solutions (prototypes)

Extreme Programming

Design

CodingTest

Planning

Software
Increment

Design

CodingTest

Planning

Software
Increment

Coding

Coding

Design

CodingTest

Planning

Software
Increment

• Each story becomes
a unit test that
serves as
specification

• The program is
continuously
refactored to have
the design match

Coding

Coding

Design

CodingTest

Planning

Software
Increment

• To ensure
continuous review,
XP mandates pair
programming

Extreme Programming

Design

CodingTest

Planning

Software
Increment

Design

CodingTest

Planning

Software
Increment

Testing

Test

Design

CodingTest

Planning

Software
Increment

Unit tests

• detect errors

• find missing
functionality

• measure progress

Extreme Programming

Test

Planning

Software
Increment

Design

CodingTest

Planning

Software
Increment

• The resulting
prototypes result in
new stories

Extreme Programming

Design

CodingTest

Planning

Software
Increment

Design

CodingTest

Planning

Software
Increment

Spot the Difference

Scrum

Scrum

• An iterative and incremental agile software
development method for managing software
projects and product or application development.

• Small working teams to maximize communication,
minimize overhead and maximize knowledge
sharing.

• Adaptable to technical and business changes.

• Yields frequent software increments that can be
inspected.

http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development

Scrum

• Development work and the people who perform it
are partitioned into clean, low coupling partitions.

• Constant testing and documentation is performed.

• Ability to declare project “done” whenever
required.

Scrum

Demos: Demonstrate software increment to the
customer for evaluation.

Scrum
A prioritized list project requirements or
features that provide business value.

Backlog:

Sprints: Consists of work units that are required to
achieve a defined backlog into a predefined
time-box (usually 30 days).

Scrum Meetings: Short 15 mins. meetings held daily by the
scrum team. The Scrum master leads the
meeting.

Daily Scrum

Daily Scrum
Each day during a Sprint (same time + place), the team
holds a Daily Scrum, where each team member
answers three questions:

1. What did I do yesterday that helped the
Development Team meet the Sprint goal?

2. What will I do today to help the Development
Team meet the Sprint goal?

3. Do I see any impediment that prevents me or the
Development Team from meeting the Sprint goal?

Your Sprints

 Bottom Layer

 Top Layer (GUI)

1. Core Use Case

2. Top Layer

3. May-Haves

Summary

